Optimize IAS
  • Home
  • About Us
  • Courses
    • Prelims Test Series
      • LAQSHYA 2026 Prelims Mentorship
      • Prelims Test Series 2025
    • CSE Integrated Guidance 2025
      • ARJUNA PRIME 2025
    • Mains Mentorship
      • Arjuna 2026 Mains Mentorship
  • Portal Login
  • Home
  • About Us
  • Courses
    • Prelims Test Series
      • LAQSHYA 2026 Prelims Mentorship
      • Prelims Test Series 2025
    • CSE Integrated Guidance 2025
      • ARJUNA PRIME 2025
    • Mains Mentorship
      • Arjuna 2026 Mains Mentorship
  • Portal Login

Moiré Superconductors: Unlocking New Frontiers in Quantum Materials

  • November 28, 2024
  • Posted by: OptimizeIAS Team
  • Category: DPN Topics
No Comments

 

 

Moiré Superconductors: Unlocking New Frontiers in Quantum Materials

Sub :Sci

Sec: Awareness in IT and Computer

Why in News

  • Recent research has demonstrated that moiré materials made from semiconductors, such as twisted bilayer tungsten diselenide (tWSe₂), exhibit superconductivity. This discovery challenges the earlier notion that superconductivity was exclusive to graphene-based moiré systems. The study, published in Nature, opens new avenues for exploring quantum materials and their unique properties.

What Are Moiré Materials?

  • Moiré materials are formed by stacking two layers of 2D materials and rotating one layer by a small angle. This misalignment creates a distinct moiré pattern that alters the material’s electronic and quantum properties.
  • Example: Graphene, a single layer of carbon atoms, forms a moiré material when stacked and twisted.
  • The study shows that semiconductor-based moiré materials like twisted bilayer tungsten diselenide tWSe₂ also exhibit superconductivity, previously thought to be unique to graphene.
  • Formation: The twist in the layers of moiré materials creates a pattern that influences their electronic structure.
  • The twist results in the formation of flat energy bands, where electrons exhibit uniform energy levels, leading to slow-moving, “heavy” electrons.
  • The flat bands enhance electron-electron interactions, which play a critical role in superconductivity.

Superconductivity in tWSe₂:

  • The researchers created a moiré material using a twist angle of 3.65° in tWSe₂.
  • The material exhibited superconductivity at a temperature of approximately -272.93°C, comparable to high-temperature superconductors.
  • Unlike graphene-based systems, tWSe₂ showed stable superconducting properties, even under cycling between room and transition temperatures.
  • Strong electron interactions in moiré materials result in the formation of Cooper pairs. These paired electrons move without resistance, leading to superconductivity.
  • In tWSe₂, superconductivity is driven primarily by electron-electron interactions and half-filled electronic states, contrasting with graphene-based systems that rely on electron-lattice interactions.
  • The material exhibited a coherence length ten times longer than other moiré materials, indicating its stable superconducting state.

About Cooper pair:

A Cooper pair is a pair of electrons that bond together in a superconducting material due to attractive interactions, despite their natural repulsion.

This pairing occurs at low temperatures when electrons interact with lattice vibrations (phonons) or other mechanisms.

The paired electrons move in a coordinated manner, enabling them to flow without scattering or resistance. This phenomenon underlies superconductivity, where electrical current passes through the material with zero energy loss.

Comparison:

PropertyGraphene-Based Moiré MaterialstWSe₂
Superconductivity DriverElectron-lattice interactionsElectron-electron interactions
Temperature StabilityLess stableMore stable
Transition TemperatureHigher than tWSe₂~-272.93°C
Moiré Superconductors: Unlocking New Frontiers in Quantum Materials Science and tech

Recent Posts

  • Daily Prelims Notes 23 March 2025 March 23, 2025
  • Challenges in Uploading Voting Data March 23, 2025
  • Fertilizers Committee Warns Against Under-Funding of Nutrient Subsidy Schemes March 23, 2025
  • Tavasya: The Fourth Krivak-Class Stealth Frigate Launched March 23, 2025
  • Indo-French Naval Exercise Varuna 2024 March 23, 2025
  • No Mismatch Between Circulating Influenza Strains and Vaccine Strains March 23, 2025
  • South Cascade Glacier March 22, 2025
  • Made-in-India Web Browser March 22, 2025
  • Charting a route for IORA under India’s chairship March 22, 2025
  • Mar-a-Lago Accord and dollar devaluation March 22, 2025

About

If IAS is your destination, begin your journey with Optimize IAS.

Hi There, I am Santosh I have the unique distinction of clearing all 6 UPSC CSE Prelims with huge margins.

I mastered the art of clearing UPSC CSE Prelims and in the process devised an unbeatable strategy to ace Prelims which many students struggle to do.

Contact us

moc.saiezimitpo@tcatnoc

For More Details

Work with Us

Connect With Me

Course Portal
Search